Find the average value of the function on the given interval.

1) $f(x)=x^{2}, \quad[-1,1] \quad \frac{1}{3}$
2) $g(x)=x^{2} \sqrt{1+x^{3}}, \quad[0,2]$
3) $f(t)=t e^{-t^{2}}, \quad[0,5] \quad \frac{1}{10}\left(1-e^{-25}\right)$
4) $h(x)=\cos ^{4} x \sin x, \quad[0, \pi] \quad \frac{2}{5 \pi}$

Find the average value of f on the given interval. Find c such that $f_{\text {ave }}=f(c)$. Sketch the graph f and a rectangle whose area is the same as the area under the graph of f. You may need to use a graphing calculator.
5) $f(x)=(x-3)^{2}, \quad[2,5]$

$$
\begin{aligned}
& f_{\text {ave }}=1 \\
& c=2 \text { or } 4
\end{aligned}
$$

6) $f(x)=2 \sin x-\sin 2 x, \quad[0, \pi]$

$$
\begin{aligned}
& f_{\text {ave }}=\frac{4}{\pi} \\
& c_{1} \approx 1.238 \text { or } c_{2} \approx 2.808
\end{aligned}
$$

7) If f is continuous and $\int_{1}^{3} f(x) d x=8$, show that f takes on the value 4 at least once on the interval $[1,3]$.
f is continuous on $[1,3]$, so by the Mean Value Theorem for Integrals there exist a number c in $[1,3]$ such that $\int_{1}^{3} f(x) d x=f(c)(3-1)$ which simplifies to $8=2 f(c)$ so there is a number c such that $f(c)=\frac{8}{2}=4$.
8) Find b such that the average value of $f(x)=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal to 3 .

$$
b=\frac{3 \pm \sqrt{5}}{2}
$$

9) In a certain city the temperature (in $\left.{ }^{\circ} \mathrm{F}\right) t$ hours after 9 A.M was modeled by the function:

$$
T(t)=50+14 \sin \frac{\pi}{12} t
$$

Find the average temperature during the period from 9 A.M. to 9 P.M.

$$
T_{\text {ave }} \approx 59^{\circ} \mathrm{F}
$$

10) The linear density in a rod 8 m long is $\frac{12}{\sqrt{x+1}} \mathrm{~kg} / \mathrm{m}$, where x, is measured in meters from one end of the rod. Find the average density of the rod.

$$
\rho_{\text {ave }}=6 \mathrm{~kg} / \mathrm{m}
$$

11) The velocity v of blood that flows in a blood vessel with radius R and length l at a distance r from the central axis is:

$$
v(r)=\frac{P}{4 \eta l}\left(R^{2}-r^{2}\right)
$$

where P is the pressure difference between the ends of the vessel and η is the viscosity of the blood. Find the average velocity (with respect to r) over the interval $0 \leq r \leq R$. Compare the average velocity with the maximum velocity.

$$
\begin{aligned}
& v_{\text {ave }}=\frac{P R^{2}}{6 \eta l} \\
& v_{\text {ave }}=\frac{2}{3} v_{\max }
\end{aligned}
$$

